You are here:

FREE Newsletter

The History of Rocket Science
The First True Scientists
 More of This History Feature
Main Page
Part I: Early Fireworks
Part 2:
Rocketry's First True Scientists and Modern Designs
 Related Research and Famous Scientists
The Science of  Liquid Propellants
The Science of Solid Propellants
The Evolution of Rocketry - Timeline 1700 AD - 1850 AD
1850 AD - 1957
1957 AD - 1989
Robert Goddard
Hermann Oberth
Wernher von Braun
During the latter part of the 17th century, the scientific foundations for modern space travel was laid out by the great English scientist Sir Isaac Newton (1642-1727). Newton organized his understanding of physical motion into three scientific laws. The laws explain how rockets work and why they are able to work in the vacuum of outer space. Newton's laws soon began to have a practical impact on the design of rockets. About 1720, a Dutch professor, Willem Gravesande, built model cars propelled by jets of steam. Experimenters and scientists in Germany and Russia began working with rockets with a mass of more than 45 kilograms. Some of these were so powerful that their escaping exhaust flames bored deep holes in the ground even before lift-off. 

During the end of the 18th century and early into the 19th, rockets experienced a brief revival as a weapon of war. The success of Indian rocket barrages against the British in 1792 and again in 1799 caught the interest of an artillery expert, Colonel William Congreve. Congreve set out to design rockets for use by the British military. 

The Congreve rockets were highly successful in battle. Used by British ships to pound Fort McHenry in the War of 1812, they inspired Francis Scott Key to write "the rockets' red glare," words in his poem that later became The Star- Spangled Banner. 

Even with Congreve's work, scientists had not improved the accuracy of rockets much from the early days. The devastating nature of war rockets was not their accuracy or power, but their numbers. During a typical siege, thousands of them might be fired at the enemy. All over the world, researchers experimented with ways to improve accuracy. An English scientist, William Hale, developed a technique called spin stabilization. In this method, the escaping exhaust gases struck small vanes at the bottom of the rocket, causing it to spin much as a bullet does in flight. Variations of the principle are still used today. 

Rockets continued to be used with success in battles all over the European continent. However, in a war with Prussia, the Austrian rocket brigades met their match against newly designed artillery pieces. Breech-loading cannon with rifled barrels and exploding warheads were far more effective weapons of war than the best rockets. Once again, rockets were relegated to peacetime uses. 

Modern Rocketry Begins

In 1898, a Russian schoolteacher and scientist, Konstantin Tsiolkovsky (1857-1935), proposed the idea of space exploration. In a report he published in 1903, Tsiolkovsky suggested the use of liquid propellants for rockets in order to achieve greater range. Tsiolkovsky stated that the speed and range of a rocket were limited only by the exhaust velocity of escaping gases. For his ideas, careful research, and great vision, Tsiolkovsky has been called the father of modern astronautics.

Early in the 20th century, an American scientist, Robert H. Goddard (1882-1945), conducted practical experiments in rocketry. He had become interested in a way of achieving higher altitudes than were possible for lighter-than-air balloons. He published a pamphlet in 1919 entitled A Method of Reaching Extreme Altitudes. It was a mathematical analysis of what is today called the meteorological sounding rocket. 

Goddard's earliest experiments were with solid-propellant rockets. In 1915, he began to try various types of solid fuels and to measure the exhaust velocities of the burning gases. While working on solid-propellant rockets, Goddard became convinced that a rocket could be propelled better by liquid fuel. No one had ever built a successful liquid-propellant rocket before. It was a much more difficult task than building solid- propellant rockets. Fuel and oxygen tanks, turbines, and combustion chambers would be needed. In spite of the difficulties, Goddard achieved the first successful flight with a liquid-propellant rocket on March 16, 1926. Fueled by liquid oxygen and gasoline, it flew for only two and a half seconds, climbed 12.5 meters, and landed 56 meters away in a cabbage patch. By today's standards, the flight was unimpressive, but like the first powered airplane flight by the Wright brothers in 1903, Goddard's gasoline rocket was the forerunner of a whole new era in rocket flight. 

Goddard's experiments in liquid-propellant rockets continued for many years. His rockets became bigger and flew higher. He developed a gyroscope system for flight control and a payload compartment for scientific instruments. Parachute recovery systems were employed to return rockets and instruments safely. Goddard, for his achievements, has been called the father of modern rocketry. 

A third great space pioneer, Hermann Oberth (1894-1989) of Germany, published a book in 1923 about travel into outer space. His writings were important. Because of them, many small rocket societies sprang up around the world. In Germany, the formation of one such society, the Verein fur Raumschiffahrt (Society for Space Travel), led to the development of the V-2 rocket, which was used against London during World War II. In 1937, German engineers and scientists, including Oberth, assembled in Peenemunde on the shores of the Baltic Sea. There the most advanced rocket of its time would be built and flown under the directorship of Wernher von Braun. 

The V-2 rocket (in Germany called the A-4) was small by comparison to today's designs. It achieved its great thrust by burning a mixture of liquid oxygen and alcohol at a rate of about one ton every seven seconds. Once launched, the V-2 was a formidable weapon that could devastate whole city blocks. 

Fortunately for London and the Allied forces, the V-2 came too late in the war to change its outcome. Nevertheless, by war's end, Germany's rocket scientists and engineers had already laid plans for advanced missiles capable of spanning the Atlantic Ocean and landing in the United States. These missiles would have had winged upper stages but very small payload capacities. 

With the fall of Germany, many unused V-2s and components were captured by the Allies. Many German rocket scientists came to the United States. Others went to the Soviet Union. All the scientists from Germany, including Wernher von Braun, were amazed at the progress Goddard had made. 

Both the United States and the Soviet Union realized the potential of rocketry as a military weapon and began a variety of experimental programs. At first, the United States began a program with high-altitude atmospheric sounding rockets, one of Goddard's early ideas. Later, a variety of medium- and long-range intercontinental ballistic missiles were developed. These became the starting point of the U.S. space program. Missiles such as the Redstone, Atlas, and Titan would eventually launch astronauts into space. 

On October 4, 1957, the world was stunned by the news of an Earth-orbiting artificial satellite launched by the Soviet Union. Called Sputnik I, the satellite was the first successful entry in a race for space between the two superpower nations. Less than a month later, the Soviets followed with the launch of a satellite carrying a dog named Laika on board. Laika survived in space for seven days before being put to sleep before the oxygen supply ran out. A few months after the first Sputnik, the United States followed the Soviet Union with a satellite of its own. Explorer I was launched by the U.S. Army on January 31, 1958. In October of that year, the United States formally organized its space program by creating the National Aeronautics and Space Administration (NASA). NASA became a civilian agency with the goal of peaceful exploration of space for the benefit of all humankind. 

Soon, many people and machines were being launched into space. Astronauts orbited Earth and landed on the Moon. Robot spacecraft traveled to the planets. Space was suddenly opened up to exploration and commercial exploitation. Satellites enabled scientists to investigate our world, forecast the weather, and to communicate instantaneously around the globe. As the demand for more and larger payloads increased, a wide array of powerful and versatile rockets had to be built. 

Since the earliest days of discovery and experimentation, rockets have evolved from simple gunpowder devices into giant vehicles capable of traveling into outer space. Rockets have opened the universe to direct exploration by humankind.

Last page > Early Fireworks

Information and Images Provided by NASA

Subscribe to the Newsletter

From Mary Bellis,
Your Guide to Inventors.
FREE Newsletter. Sign Up Now!

Important disclaimer information about this About site.

Newsletters & RSSEmail to a friendAdd to
All Topics | Email Article | |
Our Story | Be a Guide | Advertising Info | News & Events | Work at About | Site Map | Reprints | Help
User Agreement | Ethics Policy | Patent Info. | Privacy Policy | Kids' Privacy Policy

©2006 About, Inc., A part of The New York Times Company. All rights reserved.
Mental Health

Depression Self-Test Vitamins for Depression? Bipolar Red Flags Coping With Disasters Celebrities With Bipolar

What's Hot

Gyroscopes - Elmer Sperry and Charles Stark Draper Gyroscope...Angel AlcalaThe History of the BikiniRusi Taleyarkhan Jack Johnson